Abstract

Falls are the number one cause of injury in older adults. Wearable sensors, typically consisting of accelerometers and/or gyroscopes, represent a promising technology for preventing and mitigating the effects of falls. At present, the goal of such "ambulatory fall monitors" is to detect the occurrence of a fall and alert care providers to this event. Future systems may also provide information on the causes and circumstances of falls, to aid clinical diagnosis and targeting of interventions. As a first step towards this goal, the objective of the current study was to develop and evaluate the accuracy of a wearable sensor system for determining the causes of falls. Sixteen young adults participated in experimental trials involving falls due to slips, trips, and "other" causes of imbalance. Three-dimensional acceleration data acquired during the falling trials were input to a linear discriminant analysis technique. This routine achieved 96% sensitivity and 98% specificity in distinguishing the causes of a falls using acceleration data from three markers (left ankle, right ankle, and sternum). In contrast, a single marker provided 54% sensitivity and two markers provided 89% sensitivity. These results indicate the utility of a three-node accelerometer array for distinguishing the cause of falls.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.