Abstract

The importance of E2A transcription factors in T cell development has been demonstrated in studies of E2A-deficient mice, which display abnormal T cell development and a high frequency of T cell lymphomas. Because E2A expression is not restricted to the T cell lineage, the primary cause of the T cell phenotype in E2A-deficient mice was not fully determined. To further investigate the role of E2A in T cell lineage, we generated mice with the E2A gene disrupted exclusively during thymocyte development using the Cre-lox system. We show that this system allows E2A gene disruption to occur throughout the double-negative stage of thymocyte development. E2A deletion appears to be completed before development reaches the double-positive stage. Consistent with the gene disruption, these mice reveal a T cell intrinsic role for E2A during the transition from the double-negative stage to the double-positive stage of thymocyte development. In contrast to germline E2A knockout mice, conditional E2A knockout mice do not develop T cell lymphoma. This work establishes a new model for further investigating E2A function in T cell development and leukemiogenesis.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.