Abstract

Abstract One of the challenges of providing probabilistic information on a multitude of spatiotemporal scales is ensuring that information is both accurate and useful to decision-makers. Focusing on larger spatiotemporal scales (i.e., from convective outlook to weather watch scales), historical severe weather reports are analyzed to begin to understand the spatiotemporal scales that hazardous weather events are contained within. Reports from the Storm Prediction Center’s report archive are placed onto grids of differing spatial scales and then split into 24-h convective outlook days (1200–1200 UTC). These grids are then analyzed temporally to assess over what fraction of the day a single location would generally experience severe weather events. Different combinations of temporal and spatial scales are tested to determine how the reference class (or the choice of what scales to use) alters the probabilities of severe weather events. Results indicate that at any given point in the United States on any given day, more than 95% of the daily reports within 40 km of the point occur in a 4-h period. Therefore, the SPC 24-h convective outlook probabilities can be interpreted as 4-h convective outlook probabilities without a significant change in meaning. Additionally, probabilities and threat periods are analyzed at each location and different times of year. These results indicate little variability in the duration of severe weather events, which allows for a consistent definition of an “event” for all locations in the continental United States.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.