Abstract
A periodic pipe system composed of steel pipes and rubber hoses with the same inner radius is designed based on the theory of phononic crystals. Using the transfer matrix method, the band structure of the periodic pipe is calculated considering the structural-acoustic coupling. The results show that longitudinal vibration band gaps and acoustic band gaps can coexist in the fluid-filled periodic pipe. The formation of the band gap mechanism is further analyzed. The band gaps are validated by the sound transmission loss and vibration-frequency response functions calculated using the finite element method. The effect of the damp on the band gap is analyzed by calculating the complex band structure. The periodic pipe system can be used not only in the field of vibration reduction but also for noise elimination.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.