Abstract

The Peruvian Coastal Upwelling System (PCUS) is one of the most productive fisheries in the world. Upwelling events are associated with changes in the magnitude and location of frontal structures. SST gradients from four different data sets, NCDC, REMSS, OSTIA, and MUR are compared in two test areas off the PCUS: Païta (5°S) and Pisco (14°S). In both areas gradients derived from the MUR data set show greater magnitudes, as well as larger seasonal cycles. Off Pisco, the magnitude of the seasonal cycle of 2.2°C/100km in MUR is larger than the one derived from the lower resolution data sets. All data sets at Pisco exhibit a seasonal cycle that peaks in late Austral summer and early fall. Hovmöller diagrams calculated at 5.5°S, 10.5°S, and 14.5°S show clearly defined offshore maxima in the cross-shore gradients for all the data sets. Upwelling scales determined by the distance to the first maxima vary depending on the data set used. At 5.5°S upwelling scales vary from 10km for MUR to 50km for NCDC. At 14.5°S the scales vary from 20km for MUR to 40km for OSTIA. All four data sets show similar large-scale structures associated with the Peruvian upwelling. However, MUR shows finer scale structures that are most likely due to submesoscale to mesoscale eddies. Sub-sampled MUR 1km data at the 25km, 9km, and 4km resolutions compare well in magnitude and phase with the lower resolution products. Agreement in gradient magnitude between the lower resolution data sets and the MUR sub-sampled at their respective resolutions implies that the pixel-to-pixel analysis noise in MUR is at a similar level as the other data sets.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.