Abstract

Over two-thirds of terrestrial carbon is stored belowground and a significant amount of atmospheric CO2 is respired by roots and microbes in soils. For this analysis, soil respiration (Rs) data were assembled from 31 AmeriFlux and CarboEurope sites representing deciduous broadleaf, evergreen needleleaf, grasslands, mixed deciduous/evergreen and woodland/savanna ecosystem types. Lowest to highest rates of soil respiration averaged over the growing season were grassland and woodland/savanna 0.1). Yet, previous studies indicate correlations on shorter time scales within site (e.g., weekly, monthly). Estimates of annual GPP from the Biome-BGC model were strongly correlated with observed annual estimates of soil respiration for six sites (R2 = 0.84; p < 0.01). Correlations from observations of Rs with NPP, LAI, fine root biomass and litterfall relate above and belowground inputs to labile pools that are available for decomposition. Our results suggest that simple empirical relationships with temperature and/or moisture that may be robust at individual sites may not be adequate to characterize soil CO2 effluxes across space and time, agreeing with other multi-site studies. Information is needed on the timing and phenological controls of substrate availability (e.g., fine roots, LAI) and inputs (e.g., root turnover, litterfall) to improve our ability to accurately quantify the relationships between soil CO2 effluxes and carbon substrate storage.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.