Abstract

Both wind and rain roughen the sea surface, but whereas wind generates waves, rain generates craters, stalks and ring-waves. Average backscattered power for scatterometer returns from water surfaces is closely related to small scale features on the water surface, so we use backscattered power from short wind-waves as a basis to evaluate the importance of ring-waves. Experiments were conducted with a 13.5 GHz scatterometer (30-degrees incidence angle, vertical polarization) in a wind-wave tank that is enhanced by a rain simulator. Rain intensities ranged from 3-30 mm h-1 and wind friction velocities were between 10 and 50 cm s-1. The variance of sur-face elevation for small scale features xi(sm)2, i.e., ring-waves and short wind-waves, was computed for each case using data from a capacitance probe. Comparison of the data sets shows that the range of xi(sm)2 for the rain cases is comparable to that from light to moderate wind cases-so ring-wave amplitudes are not negligible. Analysis of the radar data provides evidence that ring-waves are the dominant feature contributing to the backscattered power. Thus ring-waves need to be included in scatterometer numerical models that contain rain effects.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.