Abstract

Abstract Lake Winnipeg has experienced dramatic increases in nutrient loading and phytoplankton biomass over the last few decades, accompanied by a marked shift in community composition towards the dominance of cyanobacteria. Comprehensive lake-wide observations of algal blooms are critical to assessing the lake's health status, its response to nutrient management practices, and an improved understanding of the processes driving blooms. We present an analysis of the spatial and temporal variability of algal blooms on Lake Winnipeg using satellite-derived chlorophyll and indices for algal bloom intensity, spatial extent, severity, and duration over the period of ESA's MERIS mission (2002–2011). Imagery documented extensive blooms covering as much as 93% of the lake surface. Bloom conditions were analysed in the context of in-lake and watershed processes to gain further insight on the drivers of bloom events. Day to day bloom variability was driven primarily by intermittent wind mixing events, with quiescent periods leading to the formation of dense surface blooms. Seasonal bloom distribution was consistent with light limitation in the south basin and lake circulation transporting bloom material towards the north-east shore. Inter-annual variability in average bloom severity was related to both total phosphorus (TP) loadings and summer lake surface temperatures. Results provide a valuable historical time series of bloom conditions to which ongoing observations from Sentinel-3's OLCI sensor can be added for longer term monitoring and change detection.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.