Abstract

Cities along rivers are threatened by floods and waterlogging, and the relationship between rainstorms and floods is complex. The temporal and spatial distributions of rainstorms directly affect flood characteristics. The location of the rainstorm center determines the flood peaks, volumes, and processes. In this study, machine learning algorithms were introduced to analyze the rain–flood relationship in Luzhou City, Sichuan Province, China. The spatial and temporal patterns of rainstorms in the region were classified and extracted, and flood characteristics generated by various types of rainstorms were analyzed. In the first type, the center of the rainstorm was in the upper reaches of the Tuojiang River, and the resulting flood caused negligible damage to Luzhou. In the second type, the center of the rainstorm occurred in the Yangtze River Basin. Continuously high water levels in the Yangtze River, combined with local rainfall, supported urban drainage. In the third type, the rainstorm center occurred in the upper reaches of the Yangtze and Tuojiang rivers. During the flooding, rainfall from Yangtze River and Tuojiang River moved towards Luzhou together. The movement of the rainstorm center was consistent with the flood routing direction of the Yangtze and Tuojiang rivers, both of which continued to have high water levels. The flood risk is extremely high in this case, making it the riskiest rainfall process requiring prevention.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call