Abstract

Chemical Enhanced Oil Recovery processes (CEOR) are nowadays commonly used by engineers to improve the recovery factor of an oil field. In this paper, we propose to investigate the physical and numerical singularities arising in the numerical simulation of polymer enhanced oil recovery technique for oil fields. We assume that the polymer is only transported in the water phase or adsorbed on the rock. The polymer reduces the water phase mobility and can change drastically the behavior of water oil interfaces. Due to its size, the polymer flows faster than water so that an inaccessible pore volume must be added in the model. We propose to review the various physical models for adsorption, mobility reduction and inaccessible pore volume. Then, a mathematical study of the simplified system will be carried out to identify its singularities and their impact on the numerical resolution. Then, considering an IMPES scheme, we propose approximate CFL (Courant-Friedrichs-Levy) criteria which are required for the numerical stability of the simulation. 1D numerical polymer flooding experiments are computed with a complete reservoir simulator to illustrate the validity of our approximate CFL criteria.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.