Abstract

An analysis of the performance of nonlinear correlation reception of direct-sequence signals in single- and multiuser channels is presented. The communications channel is modeled as containing non-Gaussian background noise and, in some cases, multiple-access interference as well. The error-probability behavior is studied asymptotically as the lengths of the spreading codes increase without bound, and conditions on the spreading sequences are obtained that assure asymptotic achievement of single-user performance in a multiuser system. A long-spreading sequence approximation to the average error probability is also derived, and this result is applied to the analysis of smooth-limiting correlation receivers in impulsive channels. Simulation results are also provided to verify the analysis. Average bit-error probabilities are computed by Monte Carlo simulations for linear, hard-limiting, and smooth-limiting correlation receivers in both single- and two-user impulsive channels. The simulation results are compared to the error rates by asymptotic approximations for the smooth limiter and also to those from previous studies on linear and hard-limiting correlators. >

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.