Abstract

AbstractIn a changing climate, the impact of tropical cyclones on the United States Atlantic and Gulf Coasts will be affected both by how intense and how frequent these storms become. The observational record of tropical cyclones in the Atlantic Basin is too short (A.D. 1851 to present) to allow for accurate assessment of low‐frequency variability in storm activity. In order to overcome the limitations of the short observational record, we downscale four Coupled Model Intercomparison Project Phase 5 models to generate synthetic tropical cyclone data sets for the Atlantic Basin that span the interval of A.D. 850–2005. Using these long‐term synthetic tropical cyclone data sets, we investigate the relationship between power dissipation and ocean temperature metrics, as well as the relationship between basin‐wide and landfalling tropical cyclone count statistics over the past millennium. Contrary to previous studies, we find only a very weak relationship between power dissipation and main development region sea surface temperature in the Atlantic Basin. Consistent with previous studies, we find that basin‐wide and landfalling tropical cyclone counts are significantly correlated with one another, lending further support for the use of paleohurricane landfall records to infer long‐term basin‐wide tropical cyclone trends.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.