Abstract

A well-known intragranular dislocation source, the Frank-Read (FR) source plays an important role in size-dependent dislocation multiplication in crystalline materials. Despite a number of studies in this topic, a systematic investigation of multiple aspects of the FR source in different materials is lacking. In this paper, we employ large scale quasistatic concurrent atomistic-continuum (CAC) simulations to model an edge dislocation bowing out from an FR source in Cu, Ni, and Al. First, a number of quantities that are important for the FR source process are quantified in the coarse-grained domain. Then, two key characteristics of the FR source, including the critical shear stress and critical dislocation configuration, are investigated. In all crystalline materials, the critical stresses and the aspect ratio of the dislocation half-loop height to the FR source length scale well with respect to the FR source length. In Al, the critical stress calculated by CAC simulations for a given FR source length agrees reasonably well with a continuum model that explicitly includes the dislocation core energy. Nevertheless, the predictions of the isotropic elastic theory do not accurately capture the FR source responses in Cu and Ni, which have a relatively large stacking fault width and elastic anisotropy. Our results highlight the significance of directly simulating the FR source activities using fully 3D models and shed light on developing more accurate continuum models.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.