Abstract

In this paper, the method for the determination of internal strains in polymer matrix composites from the strain measurements in the embedded sensors has been examined. Two types of strain sensors embedded in either chopped graphite fibre/epoxy matrix composite or unidirectional graphite fibre/polyimide matrix composite were investigated. For the chopped fibre composite, we used Kevlar49 fibres (~10μm in diameter) as strain sensors, while aluminium inclusions with diameters ranging from 1 to 20μm were embedded in the unidirectional composite. Both composite plates with embedded sensors were subjected to external loads generated by a four-point bending fixture. Strains inside the sensors were measured using either x-ray diffraction (XRD) or micro Raman spectroscopy (MRS). A model based on the equivalent inclusion method (EIM) was used to extract the internal strains in composites from the measured strains inside the embedded sensors. It has been demonstrated that the geometrical features and the material properties of the embedded strain sensors may affect the accuracy of the extraction of the composite internal strains. The average interactions between the sensors were found to have only a minor effect on the strain determination in a composite.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.