Abstract

An unprotected loss-of-flow (LOF) event has been analyzed for a 1000-MW (electric) axially heterogenous core (AHC) at the end of an equilibrium cycle, using a realistic model to evaluate the AHC safety potential. The SAS3D code was used for the initiating phase analysis, while a phenomenological approach was employed for the transition phase. The SAS3D results showed that the system rapidly approached subcriticality after experiencing a benign power burst, because of axially flattened fuel worth distribution and reduced sodium-void worth particularly around the core center. During the transition phase, fuel-steel discharge into the interassembly gaps, coupled with engagement of the upper axial blanket material in the core region, was found to result in permanent subcriticality and nonenergetic termination of the LOF event.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.