Abstract

Background: Coronavirus disease 2019 is caused by exposure to severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). It was reported that Zn2+ is an inhibitor of severe acute respiratory syndrome coronavirus (SARS-CoV). We hypothesize that the same applies to the newly discovered SARS-CoV-2. Material & methods: We compared the structure of RNA-dependent RNA polymerase between SARS-CoV and SARS-CoV-2. The RdRp’s binding to Zn2+ was studied by metal ion-binding site prediction and docking server. Results: Several regions containing key residues were detected. The functional aspartic acid residues RdRp, 618D, 760D and 761D were among the predicted Zn2+-binding residues. Conclusion: The most probable mechanism of inhibition of RdRp by Zn2+ is binding to the active aspartic acid triad while other binding sites can further destabilize the enzyme or interfere with the fidelity-check mechanism.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.