Abstract

This paper is a more in-depth analysis of the approaches used in our submission (Martínez A, García-Santa N. (2023) FRE @ BC8 SympTEMIST track: Named Entity Recognition Zenodo.) to the 'SympTEMIST' Named Entity Recognition (NER) shared subtask at 'BioCreative 2023'. We participated on the challenge submitting two systems based on a RoBERTa architecture LLM trained on Spanish-language clinical data available at 'HuggingFace' model repository. Before choosing the systems that would be submitted, we tried different combinations of the techniques described here: Conditional Random Fields and Byte-Pair Encoding dropout. In the second system we also included Sub-Subword feature based embeddings (SSW). The test set used in the challenge has now been released (López SL, Sánchez LG, Farré E etal. (2024) SympTEMIST Corpus: Gold Standard annotations for clinical symptoms, signs and findings information extraction. Zenodo), allowing us to analyze more in depth our methods, as well as measuring the impact of introducing data from CARMEN-I (Lima-López S, Farré-Maduell E, Krallinger M. (2023) CARMEN-I: Clinical Entities Annotation Guidelines in Spanish. Zenodo) corpus. Our experiments show the moderate effect of using the Sub-Subword feature based embeddings and the impact of including the symptom NER data from the CARMEN-I dataset. Database URL: https://physionet.org/content/carmen-i/1.0/.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.