Abstract

Large-scale, long-time molecular dynamics simulations are used to investigate fluctuations in the TIP4P/2005 water model in the supercooled region (240-190 K). Particular attention is focused in the vicinity of a previously reported liquid-liquid critical point [J. L. F. Abascal and C. Vega, J. Chem. Phys. 133, 234502 (2010)]. Water is viewed as an equimolar binary mixture with "species" defined based on a local tetrahedral order parameter. A Bhatia-Thornton fluctuation analysis is used to show that species concentration fluctuations couple to density fluctuations and completely account for the anomalous increase in the structure factor at small wave number observed under supercooled conditions. Although we find that both concentration and density fluctuations increase with decreasing temperature along the proposed critical isochore, we cannot confirm the existence of a liquid-liquid critical point. Our simulations suggest that the parameters previously reported are not a true liquid-liquid critical point and we find no evidence of two-phase coexistence in its vicinity. It is shown that very long simulations (on the order of 8 μs for 500 molecules) are necessary to obtain well converged density distributions for deeply supercooled water and this is especially important if one is seeking direct evidence of a two-phase region.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.