Abstract

The paper analyzes the effect of finite-length arithmetic in the calculation of 2-D linear transformations employed in some picture coding algorithms. Since the condition of zero-error in general direct and reverse transformations leads to results of little practical importance, an analysis is carried out on the statistical properties of error in 2-D linear transformation with given length of arithmetics. Then the important case of discrete cosine transform (DCT) applied to real images is considered in detail. The results of the paper allow a circuit designer to determine the representation accuracy of the one- and two-dimensional coefficients required to satisfy a preassigned reconstruction error on the image.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.