Abstract

The water and wastewater sectors of England and Wales (E&W) are energy-intensive. Although E&W’s water sector is of international interest, in particular due to the early experience with privatisation, for the time being, few published data on energy usage exist. We analysed telemetry energy-use data from Thames Water Utilities Ltd. (TWUL), the largest water and wastewater company in the UK, which serves one of the largest mega-cities in the world, London. In our analysis, we: (1) break down energy use into their components; (2) present a statistical approach to handling seasonal and random cycles in data; and (3) derive energy-intensity (kWh m−3) metrics and compare them with other regions in the world. We show that electricity use in the sector grew by around 10.8 ± 0.4% year−1 as the utility coped with growing demands and stormwater flooding. The energy-intensity of water services in each of the utility’s service zone was measured in the range 0.46–0.92 kWh m−3. Plans to improve the efficiency of the system could yield benefits in lower energy-intensity, but the overall energy saving would be temporary as external pressures from population and climate change are driving up water and energy use.

Highlights

  • Water and wastewater systems in England and Wales (E&W) are highly energy-intensive, a topic that has attracted increasing attention over the last decade or so

  • This study aims to contribute novel data and information from E&W to an already well-developed and international body of literature focusing on understanding the energy-influence of water and wastewater systems

  • We present the the temporal evolution of electricity consumption across the Thames Water Utilities Ltd. (TWUL) system by their functional category and how usage in the region compares with other parts of the world (Section 3)

Read more

Summary

Introduction

Water and wastewater systems in England and Wales (E&W) are highly energy-intensive, a topic that has attracted increasing attention over the last decade or so. Driven by the rising cost of electricity, as well as the greenhouse gas footprint associated with energy use, the sector has recognised energy as a significant operational cost that needs to be managed. E&W are currently working towards achieving a voluntary target to reduce operational greenhouse gas emissions to net-zero by 2030 [1]. Despite the rapidly changing landscape of energy-use in the water and wastewater sectors of E&W, few studies focusing on the region exist in the literature. This study aims to contribute novel data and information from E&W to an already well-developed and international body of literature focusing on understanding the energy-influence of water and wastewater systems.

Objectives
Methods
Results
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call