Abstract
Clustering is considered as one of the important data mining techniques. Document clustering is among many applications of clustering. The traditional clustering algorithms are proven inefficient for clustering rapidly generating large real world datasets. As a solution, traditional clustering algorithms are modified using distributed programming paradigm. MapReduce is a popular distributed programming paradigm designed for Hadoop distributed framework. This paper demonstrates a MapReduce based modification of K-Means clustering algorithm for document datasets. The result shows that the proposed algorithm is efficient than traditional K-Means for all size of document datasets clustering. The experiments also show that the MapReduce clustering works more efficiently when the dataset size and Hadoop cluster sizes are large.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Journal of The Institution of Engineers (India): Series B
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.