Abstract
The physiological mechanisms underpinning adaptations to starvation and cold stresses have been extensively studied in Drosophila, yet the understanding of correlated changes in stress-related and life-history traits, as well as the energetics of stress tolerance, still remains elusive. To answer the questions empirically in this context, we allowed D. melanogaster to evolve for either increased starvation or cold tolerance (24-generations / regime) in an experimental evolution system, and examined whether selection of either trait affects un-selected stress trait, as well as the impacts potential changes in life-history and mating success-related traits. Our results revealed remarkable changes in starvation/cold tolerance (up to 1.5-fold) as a direct effect of selection, while cold tolerance had been dramatically reduced (1.26-fold) in the starvation tolerant (ST) lines compared to control counterparts, although no such changes were evident in cold-tolerant (CT) lines. ST lines exhibited a higher level of body lipids and a reduced level of trehalose content, while CT lines accumulated a greater levels of body lipid and trehalose contents. Noticeably, we found that selection for starvation or cold tolerance positively correlates with larval development time, longevity, and copulation duration, indicating that these traits are among the most common targets of selection trajectories shaping stress tolerance. Altogether, this study highlights the complexity of mechanisms evolved in ST lines that contribute to enhanced starvation tolerance, but also negatively impact cold tolerance. Nevertheless, mechanisms foraging enhanced cold tolerance in CT lines appear not to target starvation tolerance. Moreover, the parallel changes in life history/mating success traits across stress regimes could indicate some generic pathways evolved in stressful environments, targeting life-history and mating success characteristics to optimize fitness.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Comparative biochemistry and physiology. Part B, Biochemistry & molecular biology
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.