Abstract

We apply random matrix theory to compare correlation matrix estimators C obtained from emerging market data. The correlation matrices are constructed from 10 years of daily data for stocks listed on the Johannesburg stock exchange (JSE) from January 1993 to December 2002. We test the spectral properties of C against random matrix predictions and find some agreement between the distributions of eigenvalues, nearest neighbour spacings, distributions of eigenvector components and the inverse participation ratios for eigenvectors. We show that interpolating both missing data and illiquid trading days with a zero-order hold increases agreement with RMT predictions. For the more realistic estimation of correlations in an emerging market, we suggest a pairwise measured-data correlation matrix. For the data set used, this approach suggests greater temporal stability for the leading eigenvectors. An interpretation of eigenvectors in terms of trading strategies is given, as opposed to classification by economic sectors.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.