Abstract

Black carbon (BC), a constituent of particulate matter, is emitted from multiple combustion sources, complicating determination of contributions from individual sources or source categories from monitoring data. In close proximity to an airport, this may include aircraft emissions, other emissions on the airport grounds, and nearby major roadways, and it would be valuable to determine the factors most strongly related to measured BC concentrations. In this study, continuous BC concentrations were measured at five monitoring sites in proximity to a small regional airport in Warwick, Rhode Island from July 2005 to August 2006. Regression was used to model the relative contributions of aircraft and related sources, using real-time flight activity (departures and arrivals) and meteorological data, including mixing height, wind speed and direction. The latter two were included as a nonparametric smooth spatial term using thin-plate splines applied to wind velocity vectors and fit in a linear mixed model framework. Standard errors were computed using a moving-block bootstrap to account for temporal autocorrelation. Results suggest significant positive associations between hourly departures and arrivals at the airport and BC concentrations within the community, with departures having a more substantial impact. Generalized Additive Models for wind speed and direction were consistent with significant contributions from the airport, major highway, and multiple local roads. Additionally, inverse mixing height, temperature, precipitation, and at one location relative humidity, were associated with BC concentrations. Median contribution estimates indicate that aircraft departures and arrivals (and other sources coincident in space and time) contribute to approximately 24–28% of the BC concentrations at the monitoring sites in the community. Our analysis demonstrated that a regression-based approach with detailed meteorological and source characterization can provide insights about source contributions, which could be used to devise control strategies or to provide monitor-based comparisons with source-specific atmospheric dispersion models.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.