Abstract
This paper presents yet another concurrency control analysis platform, CCBench. CCBench supports seven protocols (Silo, TicToc, MOCC, Cicada, SI, SI with latch-free SSN, 2PL) and seven versatile optimization methods and enables the configuration of seven workload parameters. We analyzed the protocols and optimization methods using various workload parameters and a thread count of 224. Previous studies focused on thread scalability and did not explore the space analyzed here. We classified the optimization methods on the basis of three performance factors: CPU cache, delay on conflict, and version lifetime. Analyses using CCBench and 224 threads, produced six insights. The performance of optimistic concurrency control protocol for a read-only workload rapidly degrades as cardinality increases even without L3 cache misses. (I2) Silo can outperform TicToc for some write-intensive workloads by using invisible reads optimization. (I3) The effectiveness of two approaches to coping with conflict (wait and no-wait) depends on the situation. (I4) OCC reads the same record two or more times if a concurrent transaction interruption occurs, which can improve performance. (I5) Mixing different implementations is inappropriate for deep analysis. (I6) Even a state-of-the-art garbage collection method cannot improve the performance of multi-version protocols if there is a single long transaction mixed into the workload. On the basis of I4, we defined the read phase extension optimization in which an artificial delay is added to the read phase. On the basis of I6, we defined the aggressive garbage collection optimization in which even visible versions are collected. The code for CCBench and all the data in this paper are available online at GitHub.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Similar Papers
More From: Proceedings of the VLDB Endowment
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.