Abstract

With micro-services continuously gaining popularity and low-power processors making their way into data centers, efficient execution of managed runtime systems on low-power architectures is also gaining interest. Apart from the inherent performance differences between high and low power processors, porting a managed runtime system to a low-power architecture may result in spuriously introducing additional overheads and design trade-offs. In this work we investigate how the lack of strong hardware support for Self Modifying Code (SMC) in low-power architectures, influences Just-In-Time (JIT) compilation and execution in modern virtual machines. In particular, we examine how low-power architectures, with no or limited hardware support for SMC, impose restrictions on call-site implementations, when the latter need to be patchable by the runtime system. We present four different memory-safe implementations for call-site generation and discuss their advantages and disadvantages in the absence of strong hardware support for SMC. Finally, we evaluate each technique on different workloads using micro-benchmarks and we evaluate the best two techniques on the Dacapo benchmark suite showcasing performance differences up to 15%.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.