Abstract

Multicomputer cache simulation results derived from address traces collected from an Intel iPSC/2 hypercube multicomponent are presented. The primary emphasis is on examining how increasing the number of processor nodes executing a parallel application affects the overall multicomputer cache performance. The effects on multicomputer direct-mapped cache performance of application-specific data partitioning, data access patterns, communication distribution, and communication frequency are illustrated. The effects of system accesses on total cache performance are explored, as well as the reasons for application-specific differences in cache behavior for system and user accesses. Comparing user code results with full user and system code analysis reveals the significant effect of system accesses, and this effect increases with multicomputer size. The time distribution of an application's message-passing operations is found to more strongly affect cache performance than the total amount of time spent in message-passing code. >

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.