Abstract

The flow of fluids and heat characteristics through free convection within an enclosed space has gained substantial study due to the various applications in manufacturing industries. This work examined the influence of buoyancy factors on normal convection in a heated tube filled with Copper (Cu) nanofluid. The method of finite difference was employed to characterize the regulating fluid formulae, and C++ programming language was employed to evaluate the Navier Stoke and continuity fields. This study examined Cu nanoparticles with particle sizes ranging from 1% to 10% and buoyancy values between 2.6 x 103 and 2.8 x 103 N. Cu nanofluid was used as the working fluid and the findings are presented as temperature gradient, Nusselt number, stream function, and vorticity curves. The findings revealed that an increase in the weight proportions of nanoparticles to 0.04 amplifies the buoyancy parameters to the highest value of 2.75 x 103 N; it yields a substantial enhancement in the heat transport rate by convection. Also, as the buoyancy factor increases, the temperature gradient, vorticity, and stream function of the nanofluid improve, while the local drag coefficient decreases. This study advances the understanding of buoyancy-driven convective flow and heat behavior in the technical design of floating vessels for safety and effectiveness.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call