Abstract

This study provides an argument cautioning against the use of adaptive-beamforming (ABF) techniques in conjunction with a known method for estimating the bottom reflection loss from natural marine ambient noise. This application of ABF has been investigated in the past with rather inconsistent results. Furthermore, no formal proof that ABF algorithms do indeed provide an estimate of the bottom reflection loss is available. This study moves from a recent derivation of the relationship between the bottom reflection coefficient and the Fourier transform of the marine-noise spatial coherence function. The circumstances under which the beamforming operation approximates a discrete Fourier transform (DFT) of the spatial coherence function estimated from array data are analyzed. It is shown that, under certain conditions, conventional beamforming is equivalent to directly computing the DFT of the coherence function, as long as some subtle details are properly taken into account. Furthermore, it is shown that ABF cannot be guaranteed, in general, to perform this operation, and therefore provide an estimate of the bottom reflection coefficient. The conclusions are demonstrated on simulated and measured data.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.