Abstract

A study of ductile crack growth characteristics in stainless steel welds is reported in this paper. A hybrid-type analysis of combined experimental, analytical, and predictive procedures on the subject is addressed. The study focuses on the effects of a stress/strain interaction phenomenon occurring between the crack tip and the weld-base material interface. Clear dependence of the crack initiation fracture characteristics on the weld size relative to the specimen size was found. Also, fracture toughness of a tungsten inert gas weld is shown to be comparable to that for the base stainless steel metal, whereas that of a submerged arc weld is shown to be significantly lower than the base metal. Because of the stress/strain nonproportionality associated with a local unloading due to crack growth in a ductile material, the use of a crack-tip parameter such as ΔTP* or Jˆ-integral was emphasized. On the other hand, prediction of a crack instability was attempted using a less rigorous J-estimation scheme procedure.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.