Abstract

This paper presents an analysis methodology for the calculation of the flow through internal flow components with a rotating wall such as annular seals, impeller cavities, and enclosed rotating disks. These flow systems are standard components in gas turbines and cryogenic engines and are characterized by subsonic viscous flow and elliptic pressure effects. The Reynolds-averaged Navier-Stokes equations for turbulent flow are used to model swirling axisymmetric flow. Bulk-flow or velocity profile assumptions aren’t required. Turbulence transport is assumed to be governed by the standard two-equation high Reynolds number turbulence model. A low Reynolds number turbulence model is also used for comparison purposes. The high Reynolds number turbulence model is found to be more practical. A novel treatment of the radial/swirl equation source terms is developed and used to provide enhanced convergence. Homogeneous wall roughness effects are accounted for. To verify the analysis methodology, the flow through Yamada seals, an enclosed rotating disk, and a rotating disk in a housing with throughflow are calculated. The calculation results are compared to experimental data. The calculated results show good agreement with the experimental results.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.