Abstract

A comparison about excited state intramolecular proton transfer (ESIPT) mechanism of a new sensor 3-(1,3-benzothiazol-2-yl)-2-hydroxynaphthalene-1-carbaldehyde (3BHC) in polar solvent dimethylformamide (DMF) and nonpolar solvent toluene have been investigated within the framework of the time-dependent density functional theory (TD-DFT) method. The reproduced previous experimental absorption and emission spectra via our calculations reveals the reasonability of the DFT and TD-DFT theoretical level. The staple bond lengths, bond angles, and corresponding infrared vibrational spectra demonstrate that the intramolecular hydrogen bond of 3BHC should be strengthened in both polar DMF and nonpolar toluene. Two kinds of ESIPT mechanisms for different solvents have been put forward; there is a low potential barrier in the ESIPT process in the DMF solvent, whereas there is almost a nonbarrier for the ESIPT process in the toluene solvent. Hence, we could conclude that the ESIPT process of 3BHC sensor is more likely to occur in the nonpolar solvent upon the photoexcitation, based on which, the excited state behavior of 3BHC could be controlled.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.