Abstract
Recently, variants of many classical extremal theorems have been proved in the random environment. We, complementing existing results, extend the Erdős–Gallai Theorem in random graphs. In particular, we determine, up to a constant factor, the maximum number of edges in a Pn-free subgraph of G(N,p), practically for all values of N,n and p. Our work is also motivated by the recent progress on the size-Ramsey number of paths.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.