Abstract

The subject of this paper is the mixing time of random walks on minimal Cayley graphs of complex reflection groups G(m,1,n). The key role in estimating it is played by the coupling of distributions, which has been used before for the same task on symmetric groups. The difficulty with its adaptation for the current case is that there are now two components in a walk, which are to be coupled, and they influence each other’s behaviour. To solve this problem, random walks are split into several blocks for each of which the time needed for their states to match is estimated separately. The result is upper and lower bounds on mixing times of random walks on complex reflection groups, analogous to those obtained by Aldous for a symmetric group.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call