Abstract

To reduce the memory area, a two-stage RX beamformer (BF) chip with 64 channels is proposed for the ultrasound medical imaging with a 2D CMUT array. The chip retrieved successfully two B-mode phantom images with a steering angle from -45 (°) to +45 (°), the maximum delay range of 8 μs, and the delay resolution of 6.25 ns. An analog-digital hybrid BF (HBF) is chosen for the proposed chip to utilize the easy beamforming operation in the digital domain and also to reduce chip area by minimizing the number of ADCs. The chip consists of eight analog beamformers (ABF) for the 1st-stage and a digital beamformer (DBF) for the 2nd-stage. The two-stage architecture reduces the memory area of both ABF and DBF by around four times. The DBF circuit is divided into three steps to further reduce the digital FIFO memory area by around twice. Coupled with the non-uniform sampling scheme, the proposed two-stage HBF chip reduces the total memory area by around 40 times compared to the uniform-sampling single-stage BF chip. The chip fabricated in a 0.13- μm CMOS process occupies the area of 19.4 mm(2), and dissipates 1.14 W with the analog supply of 3.3 V and the digital supply of 1.2 V.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call