Abstract

Let \( \mathbb{D} \) be an open unit disk in the complex plane. It is shown that every subspace in C(\( \mathbb{D} \)) invariant under weighted conformal shifts contains a radial eigenfunction of the corresponding invariant differential operator. This function can be expressed via the Gauss hypergeometric function and is a generalization of the spherical function on the disk \( \mathbb{D} \) which is considered as a hyperbolic plane with the corresponding Riemannian structure.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.