Abstract

A chip set composed of a laser-diode driver (LDD) and an optical receiver (RCV), which incorporates a full 2D (reshape, regenerate) function, has been developed by using silicon bipolar technology for a four-channel 5-Gb/s parallel optical transceiver. An electro-optical mixed design on SPICE of the LDD and the LD is accomplished by describing the rate equations of the LD as an electrical circuit. This design accommodates easy connectivity of the LDD chip to the LD in the optical transmitter module without the need for adjustment of the optical waveform. A pseudobalanced transimpedance amplifier (TIA) and feedforward automatic decision threshold control (ATC) in the RCV minimize the number of off-chip bypass capacitors, eliminate the need for any off-chip coupling capacitors, and keep crosstalk less than -50 dB and low cutoff frequency less than 80 kHz. A prototype parallel optical transmitter module and a prototype receiver module, based on the chip set, demonstrated asynchronous four-channel 5-Gb/s operation. The chip set has a throughput of 20 Gb/s with a power dissipation of 1.3 W at a 3.3-V supply.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.