Abstract

<abstract> <p>Among the most sought after breakthroughs nowadays to combat computational saturation in the electronic hardware realm, neuromorphic and cytomorphic mimetics of biological structures seem potentially promising. Biological circuits are distinguishable due to their minuscule dimensions and immensely low power consumption; yet they achieve extremely complex and magnificent tasks of life, such as, thinking, memorizing, decision making and self-regulating in response to the surroundings. Low power analog circuit solutions are edged over digital ones as they are inherently noisy and fuzzy like bio-systems. In this paper, an analog circuit equivalent for a well-known biological pathway, cyclic adenosine monophosphate (cAMP), has been proposed, exploiting the fabrication characteristics of an analog transistor. The work demonstrates an application of previously published research of the authors, where it was shown that a single transistor operating in analog mode can mimic some fundamental biological circuit processes like receptor-ligand binding, Michaelis Menten and Hill process reactions. Since biological pathways are chain connections of such reactions, same modular approach can be used to build electronic pathways using those basic transistor circuits. Although the idea of creating silicon life seems far-fetched at this stage, this work supplements the idea of cytomorphic chips which is already gaining interest of bio-engineering community.</p> </abstract>

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.