Abstract

In a smart grid (SG) scenario, accurate and real-time information about key grid parameters (such as voltage and current in each node of the net) are strategic requirements. In order to grant the best tradeoff between the measurement accuracy and the economic sustainability of SG distributed measurements, the design and the development of suitable low-cost current/voltage sensors are required. To this aim, this paper proposes a three-phase contactless current sensor based on anisotropic magnetoresistance effect. A suitable sensors placement strategy is used to compensate the uncertainty due to the interfering magnetic fields (i.e., magnetic fields generated from other electrical apparatus near to the sensors or from the other wires of the three-phase system). After a preliminary characterization of the proposed solution in a simulated environment, an experimental validation is carried out and reported in this paper.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.