Abstract

A genetically unstable chloramphenicol resistance gene from Streptomyces lividans 1326 was cloned and characterized. This gene and adjacent DNA regions can be lost spontaneously or amplify within variants. Biochemical studies proved that chloramphenicol is not modified by an acetyltransferase or any other enzyme and that ribosomes of the resistant strain are sensitive to chloramphenicol. Sequence data revealed that the resistance gene encodes a hydrophobic protein predicted to have 12 membrane-spanning alpha-helices and a hydropathic profile similar to the membrane of proteins required for the efflux of tetracycline. Variable proportions of the amino acids (about 16-24%) within the presumed chloramphenicol-resistant protein are identical to various aligned tetracycline-resistant proteins from Gram-negative and Gram-positive bacteria and to transporters for citrate in Klebsiella pneumonaie and for ferrichrome in Escherichia coli.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.