Abstract

A highly sensitive, specific and rapid electrochemical oxalate biosensor was constructed by covalently immobilizing sorghum leaf oxalate oxidase on carboxylated multiwalled carbon nanotubes and conducting polymer, polyaniline nanocomposite film electrodeposited over the surface of platinum (Pt) wire using N-ethyl-N′-(3-dimethylaminopropyl) carbodiimide (EDC) and N-hydroxy succinimide (NHS) chemistry. The modified electrode was characterized by scanning electron microscopy (SEM) and Fourier transform infrared (FTIR) spectrophotometry. The optimized oxalate biosensor showed linear response range of 8.4–272 μM with correlation coefficient of 0.93 and rapid response within 5 s at a potential of 0.4 V vs Ag/AgCl. The sensitivity was approximately 0.0113 μA/μM with a detection limit of 3.0 μM. Proposed oxalate biosensor was successfully applied to human urine sample.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call