Abstract

AbstractA novel amperometric immunosensor based on L‐cysteine/nanosized Prussian blue bilayer films ({NPB/L‐cys}2) and gold nanoparticles (nano‐Au) was fabricated for determination of human chorionic gonadotrophin (HCG). First, L‐cys and NPB was self‐assembled by layer‐by‐layer (LBL) technology to form {NPB/L‐cys}2 bilayer films on the gold electrode. Subsequently, nano‐Au layer was immobilized on the {NPB/L‐cys}2 bilayer films by electrodepositing gold chloride tetrahydrate and then anti‐HCG was assembly on the nano‐Au layer. Finally hemoglobin (Hb) was employed to block sites against nonspecific binding. With the electrocatalytic ability of Hb and NPB for the reduction of H2O2, the current signal of the antigen‐antibody reaction was amplified and the enhanced sensitivity was achieved. In this study, the assembly process and performance of the immunosensor were characterized by cyclic voltammetry (CV) and the morphology was researched by scanning electron microscopy (SEM). The immunosensor performed a high sensitivity and a wide linear response to HCG in two ranges from 0.5 to 10 mIU/mL and from 10 to 200 mIU/mL with a relatively low detection limit of 0.2 mIU/mL at 3 times the background noise, as well as good stability and long‐term life.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.