Abstract

A xanthine oxidase (XOD) from buttermilk was immobilized covalently onto boronic acid functionalized gold coated iron nanoparticles (Au@FeNPs) electrodeposited on pencil graphite (PG) electrode, via the boroester linkages, between free hydroxyl groups of boronic acid, α-COOH and –NH2 groups of enzyme. The surface functionalization of Fe/Au nanoparticles with boronic acid (Au@FeNPs) on pencil graphite (PG) electrode was characterized by Fourier transform infrared (FTIR), cyclic voltammetry (CV), scanning electron microscopy (SEM), atomic force microscopy (AFM) and Electrochemical impedance spectroscopy (EIS) before and after immobilization of XOD. The biosensor exhibited optimum response within 3s at pH 7.2 and 30°C and linearity in the range, 0.05μM to 150μM for hypoxanthine with a detection limit of 0.05μM (S/N=3). Apparent Michaelis Menten constant (Km(app)) for hypoxanthine was 40μM and Imax 0.125mA. The biosensor was employed to determine hypoxanthine in fish, chicken, pork, beef meat and lost 50% of its initial activity after its 200 uses over 100 days, when stored at 4°C.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.