Abstract

A prototype amperometric fructose biosensor based on membrane-bound fructose dehydrogenase (Gluconobacter sp.) and the coenzyme ubiquinone-6 immobilized in a membrane mimetic layer on a gold electrode has been constructed and tested. A bare gold electrode first was modified through chemisorption of a mixture of octadecyl mercaptan and two short-chain disulfides, 3,3'-dithiodipropionic acid and cystamine dihydrochloride. The membrane-bound enzyme, coenzyme, and additional phospholipid were codeposited through a detergent dialysis protocol. The short-chain modifiers may provide electrostatic interactions with enzyme surface charges, while the alkanethiolate and phospholipids enable hydrophobic interaction with the largely lipophilic, membrane-bound enzyme. At oxidizing potentials, the enzyme electrode responded with catalytic current densities up to 45 μA/cm(2) when exposed to fructose at 10 mM. The sensor exhibited a response time of less than 20 s, a sensitivity of 15 μA/cm(2)·mM and a detection limit of less than 10 μM. Biosensor measurements of d-fructose in apple and orange juice agreed to within a few percent with those made with an enzymatic spectrophotometric assay. The membrane mimetic layer effectively blocked access of interfering ascorbic acid to the electrode surface. Only a 4% positive error was observed in the presence of ascorbic acid at 5% of the fructose concentration (2 mM), which indicates that this construct could be particularly useful for quantitation of fructose in citrus juice.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call