Abstract

Nine tachykinin-related peptides (TRPs), designated LemTRP-1–9, were recently isolated from the cockroach, Leucopheae maderae. To obtain a LemTRP resistant to endo- and exoprotease-mediated hydrolysis, we synthesized a peptide with one of the carboxy terminus residues substituted for a sterically hindered aminoisobutyric acid (Aib) and with the amino terminus blocked with a pyroglutamate. The Aib-containing analogue of the nonapeptide LemTRP-1 (Aib–LemTRP-1) thus has the sequence pGlu–Ala–Pro–Ser–Gly–Phe–Leu–Aib–Val–Arg-NH 2. This analogue was shown to be resistant to hydrolysis by recombinant angiotensin-converting enzyme (ACE), from Drosophila melanogaster. Endogenous LemTRP-1 on the other hand was rapidly hydrolysed by ACE at the Gly 7–Val 8 bond, resulting in a single heptapeptide. The Aib–LemTRP-1 has about the same potency as LemTRP-1 in inducing contractions of the L. maderae hindgut muscle. It was also tested in intracellular recordings for ability to induce firing of action potentials in dorsal unpaired median (DUM) neurons in the metathoracic ganglion of the locust Locusta migratoria. The Aib-containing analogue was nearly as active as LemTRP-1 and the natural ligand locustatachykinin I. LemTRP-1 and Aib–LemTRP-1 had the same transient time course of action on the cockroach hindgut. This suggests that peptide degradation is not likely to be the cause of the transient action of TRPs.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.