Abstract

MRI image analysis of brain regions based on deep learning can effectively reduce the workload of doctors in reading films and improve the accuracy of diagnosis. Therefore, deep learning models have great application prospects in the classification and prediction of Alzheimer’s patients and normal people. However, the existing research has ignored the correlation between small abnormalities in local brain regions and changes in brain tissues. To this end, this paper studies an Alzheimer’s disease identification and classification model based on the convolutional neural network (CNN) with attention mechanisms. In this paper, the attention mechanisms were introduced from the regional level and the feature level, and the information of brain MRI images was fused from multiple levels to find out the correlation between the slices in brain MRI images. Then, a spatio-temporal graph CNN with dual attention mechanisms was constructed, which made the network model more attentive to the salient channel features while eliminating the impact of certain noise features. The experimental results verified the effectiveness of the constructed model in identification and classification of Alzheimer’s disease.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.