Abstract

The trend of pushing inference from cloud to edge due to concerns of latency, bandwidth, and privacy has created demand for energy-efficient neural network hardware. This paper presents a mixed-signal binary convolutional neural network (CNN) processor for always-on inference applications that achieves 3.8 $\mu \text{J}$ /classification at 86% accuracy on the CIFAR-10 image classification data set. The goal of this paper is to establish the minimum-energy point for the representative CIFAR-10 inference task, using the available design tradeoffs. The BinaryNet algorithm for training neural networks with weights and activations constrained to +1 and −1 drastically simplifies multiplications to XNOR and allows integrating all memory on-chip. A weight-stationary, data-parallel architecture with input reuse amortizes memory access across many computations, leaving wide vector summation as the remaining energy bottleneck. This design features an energy-efficient switched-capacitor (SC) neuron that addresses this challenge, employing a 1024-bit thermometer-coded capacitive digital-to-analog converter (CDAC) section for summing pointwise products of CNN filter weights and activations and a 9-bit binary-weighted section for adding the filter bias. The design occupies 6 mm2 in 28-nm CMOS, contains 328 kB of on-chip SRAM, operates at 237 frames/s (FPS), and consumes 0.9 mW from 0.6 V/0.8 V supplies. The corresponding energy per classification (3.8 $\mu \text{J}$ ) amounts to a 40 $\times $ improvement over the previous low-energy benchmark on CIFAR-10, achieved in part by sacrificing some programmability. The SC neuron array is 12.9 $\times $ more energy efficient than a synthesized digital implementation, which amounts to a 4 $\times $ advantage in system-level energy per classification.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call