Abstract

B-Myb is a highly conserved member of the Myb transcription factor family. The primary transcript of the B-myb gene is spliced alternatively in two mRNAs which either contain or lack a sequence corresponding to the so-called exon 9A of c-myb. Recent studies showed that full-length B-Myb containing the exon 9A encoded amino acids is a cell cycle regulated transcription factor whose activity is stimulated by cyclin A/Cdk 2-dependent phosphorylation at the carboxyl-terminus of B-Myb. We have now investigated in more detail the transactivation potential of the shorter isoform of B-Myb lacking exon 9A. Here, we show that B-Myb lacking exon 9A has no transactivation activity even in the presence of cyclin A. This inactivity of the shorter isoform of B-Myb is not due an improper subcelluar localization. Our work suggests that B-Myb lacking exon 9A may act as an inhibitor for full-length B-Myb mediated transactivation. Furthermore, by analysing the transactivation potential of Gal4/B-Myb fusion proteins we have identified the amino-terminal part of the exon 9A as the principal transactivation domain of full-length B-Myb. The results presented here demonstrate that B-myb encodes both an activator and an inhibitor of transcription and, thus, reveal an additional level of regulation of B-Myb activity beside the known cyclin dependent mechanisms.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.