Abstract

A new basis set for a full potential treatment of crystal electronic structures is presented and compared to that of the well-known linearized augmented plane-wave (LAPW) method. The basis set consists of energy-independent augmented plane-wave functions combined with local orbitals. Each basis function is continuous over the whole unit cell but it may have a discontinuous slope at the muffin-tin boundaries, i.e. at the surfaces of atomic centered, non-overlapping spheres. This alternative way to linearize the augmented plane-wave method is shown to reproduce the accurate results of the LAPW method, but using a smaller basis set size. The reduction in number of basis functions is most significant for open structures.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call