Abstract
In undergraduate calculus of several variables, double and triple integrals are usually defined as limits of certain Riemann sums. The existence of the integral, as well as the integration formulas, are stated without proof since they require more advanced mathematics. In this article, an alternative and straightforward way of defining multiple integrals is proposed where the usual integration formulas follow as a direct application of the definition. The underlying idea is to map the arbitrary region of integration to an n-dimensional open interval, and integration over the latter is defined via the usual iterated integral. Moreover, the substitution formula is taken as a definition. Numerous illustrative examples are provided.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: International Journal of Mathematical Education in Science and Technology
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.